Qubits

Así es la computación cuántica del futuro que ya está aquí

IBM ha presentado recientemente el primer procesador cuántico para uso comercial que supera la barrera de los 100 qubits, pero en dos años habrá procesadores con más 1.000

IBM System One, primer ordenador cuántico de uso comercial.
IBM System One, primer ordenador cuántico de uso comercial.La RazónCortesía de IBM.

La conocida Ley de Moore se queda corta para la computación cuántica. Si el cofundador de Intel, Gordon E. Moore, expresó en 1965 que la cantidad de transistores en un microprocesador se duplicaría cada dos años, IBM parece empeñada en empequeñecer lo que durante décadas se ha considerado un progreso más que rápido. La compañía publicó el año pasado una hoja de ruta de sus procesadores cuánticos hasta 2023 en la que mejoraba el rendimiento del procesador cuántico Falcon (27 qubits) de 2019 en 40 veces. Y, por ahora y pese a los fenomenales retos que supone la computación cuántica, lo está cumpliendo.

El último hito ha sido anunciado por el CEO de IBM, Arvind Krishna, a mediados de este mes. Eagle es el primer procesador cuántico de uso comercial en superar la barrera de los 100 qubits alcanzando los 127. Osprey, su sucesor, deberá estar listo el próximo año con una potencia de 433 qubits. Y el procesador Condor, en 2023, contendrá 1.121. Sin fecha determinada, el objetivo son procesadores con más de un millón de qubits.

La barrera de los 100 qubits es importante porque supera la capacidad de procesamiento de las computadoras tradicionales más potentes. “Cien qubits, todos entrelazados cuánticamente, no se pueden simular con una computadora tradicional porque eso requeriría 2^100 bits. Ese es un número enorme. No existe supercomputadora clásica alguna con esa capacidad”, explica Zaira Nazario, Líder técnico de teoría y aplicaciones cuánticas en IBM Quantum, a LA RAZÓN.

Así se ve un ordenador cuántico al natural.
Así se ve un ordenador cuántico al natural.La RazónCortesía de IBM.

Google, sin embargo, se atribuyó haber superado esa misma barrera en 2019 con su procesador cuántico Sycamore de 53 qubits, una declaración que fue abiertamente cuestionada por IBM. En cualquier caso, la principal diferencia entre el progreso de IBM y otras compañías en la computación cuántica es que ha sido la primera en darle un uso comercial y acercarla a una base mayor de usuarios.

¿Qué es un qubit?

La capacidad de procesamiento de un chip cuántico se mide en qubits. Si en la informática tradicional un bit es la unidad mínima de información, un qubit o bit cuántico también lo es en el caso de la computación cuántica. La diferencia fundamental, sobre la que se asienta el concepto de los procesadores cuánticos, es que mientras que el primero puede tomar un valor de 0 o 1 y sólo puede estar en uno de esos estados, un qubit puede estar en ambos simultáneamente y en una serie de estados intermedios, lo que multiplica exponencialmente su capacidad de procesar información. Esta es la explicación asequible para el común de los mortales, pero todo lo que se edifica a partir de esta aplicación de los principios de la mecánica cuántica no es solo mucho más complejo, sino un verdadero desafío de ingeniería.

Diagrama del procesador cuántico Eagle.
Diagrama del procesador cuántico Eagle.La RazónCortesía de IBM.

Un procesador cuántico codifica información en estados mecánico cuánticos entrelazados. El entrelazamiento cuántico es muy poderoso y hace que el estado entrelazado contenga más información que la colección de sus partes individualmente. Se aplican entonces puertas lógicas cuánticas, que son operaciones cuánticas que hacen que esos estados entrelazados evolucionen según las leyes de la mecánica cuántica y así procesan la información codificada en ellos”, explica Nazario.

Para la fabricación de un qubit cuántico se emplea lo que se llama una unión de Josephson que es, cuenta Nazario, “como un sándwich de un aislante entremedio de dos metales superconductores y que está conectado a un condensador eléctrico. En una unión de Josephson, puede haber una corriente eléctrica pasando como un túnel entre los dos superconductores, cruzando el aislante. Eso es lo que define los estados del qubit, que está fabricado en un sustrato de silicio”.

Dispositivo qubit de IBM.
Dispositivo qubit de IBM.La RazónCortesía de IBM.

El primer ordenador cuántico de uso comercial

Hay algo que asemeja a las actuales computadoras cuánticas con las primeras máquinas programables que se construyeron a principios de la década de los 40 del siglo pasado y es su tamaño. De la misma forma que el Z3 de 1941 ocupaba una habitación entera, un ordenador cuántico integrado como los IBM System One es una maquina de gran tamaño en un sistema refrigerador diseñado a medida que se ubica dentro de una cámara hermética de tres metros de alto por tres metros de ancho.

El motivo es que los qubits son extremadamente sensibles a condiciones externas como la temperatura, las vibraciones o la radiación electromagnética. Por ese motivo, deben permanecer en un entorno aislado y a temperaturas extremadamente bajas que llegan al cero absoluto, menos 273 grados.

El interior del IBM System One.
El interior del IBM System One.La RazónCortesía de IBM.

Los IBM System One son los primeros ordenadores cuánticos integrados de uso comercial en estar disponibles. No para comprarlos, pero las empresas pueden contratar su uso e investigadores y desarrolladores también pueden acceder a él a través de los servicios en la nube IBM Cloud. El primero se instaló en Nueva York en 2019 y desde entonces IBM ha desplegado dos más, en Alemania y en Japón, con planes para otros dos en Cleveland, Estados Unidos, y Corea del Sur. “Las empresas e investigadores están usando estos sistemas para explorar algoritmos y aplicaciones cuánticas relevantes a sus operaciones de negocio o investigaciones. Exploran el potencial para aplicaciones puramente científicas y para aplicaciones industriales como lo son el desarrollo de materiales nuevos, mejoras a métodos de aprendizaje automático, procesos energéticos más eficientes, análisis de riesgo, finanzas y más”, dice la Líder técnico de teoría y aplicaciones cuánticas en IBM Quantum. La siguiente generación, IBM System Two, llegará en 2023.

Construcción de la cámara frigorífica que mantiene en su interior una temperatura de menos 273 grados.
Construcción de la cámara frigorífica que mantiene en su interior una temperatura de menos 273 grados.La RazónCortesía de IBM.

El procesador Eagle, sin embargo, no está aún en ninguno de estos equipos que emplean generaciones anteriores de los procesadores cuánticos de IBM, Falcon (27 qubits) y Hummingbird (67 qubits). El último procesador de la compañía se encuentra en funcionamiento en el sistema cuántico IBMq Washington y estará disponible para los clientes premium de IBM Quantum antes de fin de este año.

Se trata de ordenadores con una arquitectura híbrida. “Una parte importantísima de un sistema cuántico es la electrónica clásica que se necesita para generar las microondas que usamos para controlar los qubits, y la electrónica necesaria para medirlos y procesar la información. Todo esto está integrado en el IBM Quantum System One”, explica Nazario, “la informática tradicionaljuega un papel fundamental en cualquier sistema de computación cuántica, no solo IBM Quantum System One. La usas para definir los problemas que quieres resolver y entrar la “data” (información). La usas para procesar la información que lees luego de ejecutar los circuitos cuánticos en procesadores cuánticos. La usas en algoritmos heurísticos que combinan computaciones clásicas y cuánticas. La usas para mitigar errores en el resultado obtenido de circuitos cuánticos. Y esos son solo unos ejemplos”.

Detalle del interior del IBM System One.
Detalle del interior del IBM System One.La RazónCortesía de IBM.

¿Qué tipo de software emplea un ordenador como IBM System One? Al igual que las computadoras tradicionales, se necesita un lenguaje ensamblador que en este caso es QASM. “Además, necesitas software a un nivel más alto para poder comunicarte con las computadoras cuánticas y extraer su beneficio. Eso es Qiskit, nuestro kit de desarrollo de software que ofrece las herramientas necesarias para desarrollar circuitos cuánticos, algoritmos y aplicaciones” explica la científica de IBM.

La computación cuántica no está destinada a sustituir la tradicional sino a complementarla. “La computación tradicional resuelve muchos problemas mejor que la cuántica, mientras que la computación cuántica es buena para problemas muy específicos. Además, como ya describimos, la computación cuántica necesita de la computación tradicional, no solo porque la “data” que entra y sale es clásica, sino porque los códigos de corrección de errores cuánticos requieren computación tradicional”, concluye Zaira Nazario.